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Switching behaviour and electro-optic response due to the soft 
mode ferroelectric effect in chiral smectic A liquid crystals 

by I. ABDULHALIM and G. MODDEL* 
Department of Electrical and Computer Engineering and Optoelectronic Computing 

Systems Center, University of Colorado, Boulder, Colorado 80309-0425, U.S.A. 

(Received 6 August 1990; accepted 1 November 1990) 

The switching characteristics and the electro-optic response due to the 
electroclinic effect in chiral smectic A liquid crystals are analysed theoretically. We 
give an exact analytic solution to the dynamic equation of the tilt angle (8) up to the 
O4 term in the Landau expansion of the free energy. The non-linear behaviour of B 
and the characteristic. time under an applied electric field are described near the 
S2-S; transition. They both have a finite value at the transition which depends on 
the field. The characteristic time (to) exhibits a critical slowing down at sufficiently 
low fields, which occurs only in the early stages of the switching. At late stages, the 
switching time exhibits a maximum at a particular temperature which depends on 
the field, and then decreases in a very narrow temperature range near the transition. 
The U4 term is important in explainingcertain properties even for very small 6, and it 
becomes essential for B > 5". The optical response of an electroclinic liquid crystal 
cell is considered in detail. We derive an expression for the output intensity of light 
passing through an electroclinic cell. The delay and rise times for the optical signal 
are shown to a first approximation to be 0.379 to and 2.577 to, respectively. 

1. Introduction 
The soft mode ferroelectric (electroclinic) effect in chiral smectic A (SX) liquid 

crystalline mesophase was first described and observed by Garoff and Meyer [I, 21. 
Based on a symmetry argument similar to that for ferroelectricity in the tilted phases of 
chiral smectic liquid crystals, they predicted the existence of the electroclinic effect. An 
electric field applied to a chiral, non-tilted smectic liquid crystal may induce an 
inclination of the molecules in the plane normal to the electric field. Recently 
considerable attention has been devoted to the electroclinic effect, both from practical 
and fundamental points of view. The nature of the transition from the S z  to chiral 
smectic C (SE) phase under an applied electric field is still a matter of controversy due to 
different estimations of the critical exponent for the effective susceptibility which 
controls the tilt C1-61. Recently the electroclinic effect was reported for more ordered 
smectic structures [7,8] than the S z  phases as well as for a chiral nematic liquid crystal 

From a practical point of view the electroclinic effect allows for electro-optic 
switching which is a factor of 1&100 faster than the surface stabilized ferroelectric 
liquid crystal, depending on the material and the temperature [lo]. In addition, the 
electroclinic effect is continuous with the field and does not show bistability, allowing 
for grey level applications [ 111. Although the electroclinic effect exists in the surface 
stabilized ferroelectric liquid crystal case, it is a minor effect; that is, the changes in the 
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494 I. Abdulhalim and G. Moddel 

tilt angle 8 (soft mode) are negligible compared to the changes in the azimuth angle q 
(Goldstone mode), except when very close to the Sz-Sx transition 1121. For thick 
enough cells where the helicoidal structure exists in the S z  phase it is possible to 
suppress the Goldstone mode by applying an electric or a magnetic DC field such that 
the helix is unwound and a homogeneous structure is obtained [13,14]. 

The phenomenological treatment of the electroclinic effect thus far has been for very 
small induced tilt angles and has included only the 6’ term in the Landau expansion of 
the free energy [1,2]. This approximation yields an induced tilt angle which varies 
linearly with the field and inversely proportional to the temperature. The switching 
time was shown to be independent of the field and inversely proportional to 
temperature. For liquid crystal mixtures which exhibit induced tilt angles of less than a 
few degrees this linear approximation has been verified experimentally to be 
satisfactory, at least for temperatures far from the transition [l2]. With the advent of 
new electroclinic materials with higher electroclinic coupling constants, a non-linear 
behaviour of the induced tilt angle and the switching speed have been observed 
[ 12-16]. In the present work we solve the dynamic equation of motion for B analytically 
up to the O4 term in the Landau expansion. We explain the non-linear behaviour near 
the transition, and reveal other new properties which await experimental verification. 
In $ 2  the geometry and formulation of the problem are given. In 83 the analytic 
solutions are derived and simplified approximate expressions for several cases are 
given. In $ 4 the behaviour is presented graphically and discussed. In $ 5 we characterize 
the electro-optic response of an electroclinic device, which may be used to analyse the 
measured electro-optic response. 

2. Geometry and formulation 
The cell configuration commonly used to observe a large electroclinic effect has the 

planar geometry shown in figure 1. In this geometry the molecular layers are stacked 
perpendicular to the top and bottom glass substrates, which are coated with 
transparent conducting oxide electrodes. In the field-free state the molecular director A 
is along the layers normal 2 lying in the plane of the substrates. Applying an electric field 
E between the two plates results in a rotation of the director in the plane of the 
substrates in a direction which depends on the sign of E .  Let E ,  designate the field 
along & i, respectively, and 8 = 6+ be the respective induced rotations. We consider the 
case of uniform alignment, i.e. no twist in the x direction exists due to polar interactions 
[ 171, and there is no pretilt of the layers. For electro-optic measurements the cell is 
usually mounted between crossed polarizers, as shown in figure 1, so that the amplitude 
of the transmitted light is modulated. 

Following Garoff and Meyer [ l ,  21, the Landau description of the bulk elastic free 
energy per unit area of SX phase can be written as 

where F ,  represents contributions to F from the undisturbed S z .  P is the component of 
the average molecular polarization parallel to E,  E,  is the dielectric constant excluding 
contributions from the permanent dipole, xp is a generalized susceptibility, c is the 
electroclinic coupling constant between 0 and P ,  and a‘ and b are the usual Landau- 
expansion coefficients for second order phase transitions where a’ = ah (T- To), and 
where ah and bare temperature independent and To is the phase transition temperature 
for the racemic mixture. 
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Figure 1. Schematic showing the geometry of the electroclinic liquid crystal structure between 

the two glass substrates coated with transparent conducing oxide as electrodes. 

In [l2], Anderson et al. included an effective small elastic term in the Landau 
expansion to account for the interaction with cell walls. This way they were able to 
describe the switching both in the C* and A* phases, allowing the transition to be 
smooth. Trajectories to a field were drawn and showed non-vanishing cp in a narrow 
temperature range over T,. However, the validity of the included elastic term is not well 
established. In the present work we take cp = 0 and consider changes only in 6. We show 
that this description is adequate to explain many features of the electroclinic switching 
and allows for analytic solutions. 

Since P is an independent variable, its equilibrium value is found by setting aFjaP 
to zero, with the result that 

P = Xp(E + c6). 

Inserting (2)  into (l), the following form for F is obtained: 

F = F ,  + [+a82 + ;be4 + . . . - c X p e ~ l  dx. (3) s 
Here F ,  includes both F ,  and all the terms which have no dependence on 6 and 

therefore do not contribute to the torque balance equation. The product c'= cxp is the 
coupling constant between 6 and E. The factor a is now the effective susceptibility 
controlling the tilt of the director near the S2-S; transition, and is given by a = a' - c2xP. 
The shift from a' to a by c2xP indicates a renormalization of the transition temperature 
from To for the non-chiral transition. Thus a=a,(T-T,) with the temperature 
independent constant a, and T, is the new transition temperature. It was stated by 
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496 I. Abdulhalim and G. Moddel 

Garoff and Meyer [l ,  21 that a goes to zero on the S: side of the chiral transition as 
some power law a=ao(T- TJY. The experimental values obtained for the critical 
exponent y are controversial, but they are close to y z 1 which is more consistent with 
the mean field description of the S:-Sz transition than the XYmodel [l-61. 

The dynamic equation for the motion of 0 from equation (3) is given by the Euler- 
Lagrange equation 

ae 
at 

‘ ~ O - = C X ~ E - U O -  be3. (4) 

Here ye is the rotational viscosity associated with the 6 motion. Since the 
electroclinic effect depends strongly on temperature, the dependence of ‘lo on 
temperature must be considered. Generally ‘lo is assumed to show only a simple 
Arrhenius form 

‘lo = ‘lo exp (EaIT), ( 5 )  
where E ,  is the activation energy in units of the Boltzmann constant. However, recently 
[lS], there have been indications that ‘lo may exhibit a critical behaviour near the 
A*-C* transition of the form, ‘lo%(T- ~ ) - 0 ’ 2 5 .  In $ 4  we will show that this cannot be 
the case. 

3. Analytical solutions 
The steady-state solution to equation (4) is given by the roots of the algebraic 

equation 

cxpE - ad - be3 = 0. (6) 

e,= u ,  + u-, (7) 

The only real physical solution to this for a > 0 (Appendix A) is given by 

where 8, is the steady-state value of the induced tilt angle, and 

where [ =4a3/(27bc2~iE2). 

3.1. Response to a step potential 
The exact time-dependent solution to equation (4), with the condition that 8 = 0 at 

t = 0 and that E changes quickly from E = 0 at t = 0 to E (step potential), is given by 
(Appendix A) 

where 

When the O4 term in the Landau expansion is neglected, the solution to equation (4) 
is given by 
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where the steady state induced tilt angle is 

and the characteristic time for 6 motion is 

497 

(12) 

Equations (1 l), (1 2) and (13) have been useful for the description of the electroclinic 
switching behaviour in the linear regime where O0 is very small [1,2,1&12,15,16]. 
When the tilt angle is larger than a few degrees, the O4 term becomes important and 
equations (7H10) must be used for a full description of the electroclinic effect. It is 
evident that there may be large deviations from the linear approximation. To this end, 
we consider several special cases for equation (7H10). When (<< 1, that is close to the 
transition and for high fields, we show that (Appendix A) 

For small fields and far from the transition ((>> 1) one finds that 6, = B0 (Appendix 
A). This is expected because in this limit the induced tilt angle is so small that the O4 
term in negligible and the response is linear (equations (1 1H13)). 

To see how the characteristic time for 6 motion varies with field qualitatively, we 
write equation (9) in the form (Appendix A) 

x e,C1- exp ( - t/z,ll, (15) 
with the time constant 

re 
(3b6: + a)' 

7, = 

In the limit where (<< 1 we find 

rle 
(3b 1 /3 (~~pE)2 /3 )  ' 

7, x 

In the limit where [>> 1, zs=zo as expected. 
In the following section we will show that if an approximation is to be considered, 

then equations (1 5) and (16) are good approximations for 0 < 5", and in general, are 
better approximations than the linear approximation equations (1  1H13). 

3.2. Relaxation 
For the relaxation after the field is turned off, which results in a decay of the tilt 

angle, we need to solve the dynamic equation for E = O  with the initial condition 6 = 8, 
at t = 0. The exact solution is given by (Appendix A) 

where zo is defined in equation (1  3). 
When the O3 term in equation (4) is neglected, the solution (18) reduces to 

6 z 6, exp ( -  t /zo)  as expected for the linear response. This is the case for small fields and 
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49 8 I. Abdulhalim and G. Moddel 

temperatures far from T,. Conversely, there can be large field dependence for the 
relaxation time near the transition and for strong fields through the dependence of the 
initial tilt Bs on the previously applied field. That is, the relaxation time depends on the 
initial state of the cell because of the non-linear terms. The time required for 0 to decay 
to any fraction l / v  of its initial value 0 is found from equation (18) to be 

zo av2+b@ 
z,,, = - 2 In ( a + b O : ) '  

Whenever the linear approximation is good, be: 40, T,,, behaves like z,. 
For the case where the field is strong enough and near the transition, the relaxation 

time may have a strong field dependence. The temperature dependence of T , , ~  resembles 
that of z,, however, there is no true divergence at the transition since qe, drops to zero at 
this point. These characteristics of the relaxation behaviour demonstrate that the linear 
approximation is not adequate near the transition. From relations (1 1H13) of the 
linear regime, the electroclinic response appears to be symmetric with identical 
characteristic rise and relaxation times independent of the field which should diverge at 
the transition (critical slowing down). Here we have shown that because of the non- 
linearity the relaxation is, in fact, not symmetric, particularly near the transition. 

3.3. Bipolar switching 
For bipolar switching we assume the field is E + from t = 0 to t = t +, and that it then 

switches quickly to E _. The solution for 0 < t d t + is given in equation (9), and the 
solution for t>t+ is given by 

- Q:-+- t = g ( Q ( ~ + ) , B s + , E + ) - g ( e , O s - , E - ) + -  B:++- t,, 
6b(  ?e 4a> 6b(  ?e :b) 

(20) 

where €Is+ and 0,- are the steady state tilt angles which correspond to E +  and E - .  
For a symmetric squarewave ( E  +I = ( E -  1 we have O:, = 0:- = 0: and equation (20) 

becomes 

Equations (20) and (21) are useful for electroclinic devices since a bipolar field 
induces twice the optic axis rotation than that of a monopolar field. For the description 
of the switching behaviour and the device physics it is adequate to take the case of step 
field, equation (9). Then the bipolar switching case may easily be understood. The 
relaxation behaviour in equation (18) and (19) is also of interest and is discussed below. 

4. Results and discussion 
The constants a, and b do not vary substantially from one liquid crystal mixture to 

another. For our simulations we have chosen: a, = 3.0 x 104N/m2 K and 
b = 8.5 x lo5 N/m2. The critical exponent for the susceptibility which controls the tilt 
has been taken as y =  1. The values for the electroclinic coupling constant, the 
generalized susceptibility, and the viscosity have been chosen such that a relatively 
large molecular rotation is observed. These chosen values, close to those obtained for 
the BDH mixture M764E are cxp=7.2 x 10-4F-V/m2 and q0=5.26x 10-"Ns/m2. 
The temperature dependence of the viscosity is of the Arrhenius form of equation ( 5 )  
with the activation energy E , = 2  x lo3 in units of the Boltzmann constant. 
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Figure 2. (A) The steady-state induced tilt angle versus the applied electric field at different 
temperatures, as indicated. (B) The steady-state induced tilt angle versus temperature at 
different field strengths, as indicated. 

4.1. Static behaviour 
The general behaviour of the induced tilt angle versus electric field and temperature 

according to equation (7) is shown in figure 2. The linear growth of 8 with E is seen to 
occur only for 8 < 5", that is for small fields and far from the transition temperature T,. 
The slope d$jdE of the linear part is shown to be enhanced near T,, while the Eli3 
saturation behaviour of 0 for 8>5" occurs for high fields and very close to T,. The 
enhancement of d8jdE for small fields and near T,  is a pretransitional effect which is 
expected from the linear regime in equation (12) and has been observed experimentally 
[ 1-81 in different liquid crystal materials, including in chiral nematics [9] which exhibit 
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the electroclinic effect. Here we should mention that d8/dE does not diverge at the 
transition as expected from the linear approximation in equation (12). From equations 
(7) and (8) it approaches the value ( c ~ ~ / 2 7 b E ~ ) ' / ~  as T-+T,. The Ell3 behaviour of 8, on 
the other hand, has been observed only for 19 > 5", frequently without satisfactory 
explanation [12,15,16]. The decay of I9 with (T- T,) is seen in figure 2(b) as expected 
also from the linear approximation. As T+T, the induced tilt angle has a finite value 
which depends on the field according to relation (14); from the linear approximation 8 is 
supposed to exhibit divergence, which has never been observed. The inclusion of the O4 
term in the free energy gives the finite value for 8 and d8/dE as T-, T,. Measuring these 
quantities as T+ T,  directly yields the product cxP and its field dependence. 

4.2. Dynamic behaviour 
The temporal evolution of 8 at different temperatures and fields is shown in figure 3. 

From equation (9) the growth is close to but not precisely exponential. In figure 4, 8(t) is 
plotted at different (T-T,) and E using the exact solution in equation (9), the 
approximate solution in equation (15), and the linear approximation in equation (1 1). 
The linear approximation is sufficient in the early stages of switching, since the induced 
tilt is small. The exponential growth in equation (15) is a good approximation both in 
the early and late stages, but it is generally a little too high in the intermediate region. 
The agreement is excellent for temperatures far from T,. This indicates that equation 
(15) rather than equation (11) should be used for the case of small tilt angles for an 
exponential fit. 

The characteristic time (re) for 8 motion, defined as the time constant for an 
exponential growth, is shown in figure 5 as a function of temperature and field. It is seen 
that q, has no field dependence far from T,, as expected from the linear regime where the 
induced tilt is small. The decrease of zo with the field near T, is due solely to the non- 
linear d 3  term in equation (4). This was observed first by Nishiyama et al. [l5], later by 
Anderson et al. [l2], with no explanation. A more detailed experimental study of the 
field dependence of 8 and zo was performed later by Lee and Pate1 [16]. Their 
explanation for the non-linear behaviour of zo with E was based on an approximate 
solution to the dynamic equation (4) and no quantitative comparison was given. When 
8 is very small, the e3 term is negligible compared to the linear term and this decay will 
be difficult to observe experimentally. 

The characteristic time increases as T-+ T,. According to the linear approximation ro 
diverges at the transition and exhibits what is called a critical slowing down, a 
frequently reported property of the transition. Here we show that critical slowing down 
occurs only in the early stages of switching. That is, the time interval required to reach 
approximately 8 = 0.88, exhibits a critical slowing down, while for 8 > 0.88, the 
characteristic time exhibits a maximum at a particular temperature close to T,. It then 
decreases very close to the transition, reaching a finite value as T-,T,. We observed this 
maximum in simulations of the time interval required for 8 to reach 0.968,. From our 
calculations we found that for 8 G0.88, there is a critical slowing down and for 8 20.88, 
there exists the above-described maximum. In figure 6 we show the time interval 
required for 8 to move from 088 ,  to 0.968, showing that during this interval the 
maximum is quite pronounced. The position of the maximum shifts toward larger 
(T- T,) with increasing E ,  and its magnitude, measured with respect to the value of z at 
z, becomes smaller. This latter property indicates that the maximum will be 
observable even more easily at small induced tilt angles than at larger ones. Therefore 
the late stages of switching cannot be modelled without the non-linear term, even for 
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Figure 3. (A) Temporal evolution of the induced tilt angle in response to a step potential a t  
constant temperature and different field strengths, as indicated. (B) Temporal evolution of 
the induced tilt angle in response to a step potential a t  constant electric field and various 
temperatures. 
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0 10 20 

Time / p g  

30 

0 20 40 60 

Figure 4. (A) Temporal evolution of the induced tilt angle for the case of the small electric field 
and close to the SX-S: transition: (a) the exact solution calculated from equation (9); (b) the 
approximate solution calculated from equation (1 5); and (c) the linear approximation 
calculated from equation (1 1). (B) Similar to (A) with higher electric field. 
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Figure 5. (A) Characteristic time for the rise of the induced tilt angle versus temperature for 
different field strengths. (B) Characteristic time for the rise of the induced tilt angle versus 
applied electric field strength at  different temperatures. 
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Figure 6. Characteristic time for the rise of the induced tilt angle from 0.8 to 0.96 of its steady 

state value versus temperature for different field strengths. 

small tilt angles. This has not been observed because the measured characteristic time is 
determined from the early stages of the switching. 

The decrease of the characteristic time near the transition results from the 
dominance of the non-linear term over the linear one. Consider the integrand in 
equation (3) as a potential energy for two coupled oscillators, one linear and the other 
non-linear. The non-linear oscillator will cause the response to be faster as the 
temperature decreases because 8, and hence the energy, is larger. The linear term will 
cause the slowing down because it becomes soft (a+O) as T-, T,. As a result, at a certain 
temperature the non-linear term dominates and a maximum is observed, as shown in 
figure 6.  When measuring the optical response time, the maximum may be observed. 
However, its height is small and might fall within the experimental error. Careful 
measurement should verify these predictions. Such a measurement will provide 
important information on the type of the transition since the term ‘critical slowing 
down’ is a fundamental concept from the theory of critical phenomena. The existence of 
the critical slowing down implies the existence of critical exponents for the relaxation 
time, and for corresponding observables of the system [19]. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Soft mode ferroelectric efects 505 

m 
3 
\ 

B 
F 

30 

20 

10 

0 

- - - - - -  - - - _ _ _ .  - - - - - - - _ _ _ _  
............................................................... 

l . . l l l l . . I I I I . . l . . . I  

0 6 10 15 20 25 

Electric Field /V/prn 

40 

0 

0 6 10 

T-T, 1 K 
Figure 7. (A) Relaxation time after the field was switched OFF versus temperature at different 

field strengths. (B) Relaxation time after the field was switched OFF versus the field at 
different temperatures. 
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The finite value of the characteristic time at T= T,  is a result of including the non- 
linear f13 term. According to the linear approximation the characteristic time diverges, a 
result which has never been observed experimentally. From equation (9) one can find 
the time interval t, at T= T, required for 0 to change from 0 = 0  to any fraction E of the 
steady-state induced tilt angle O,, that is to 0 = EO,: 

This shows that the characteristic time is finite at T= T,, and that it decreases with 
the field as E-’I3 by substituting the expression for Os at T= T, from equation (14). As 
mentioned earlier, the cxp product may be determined by measuring the finite values for 
0, and dfI/dE at T= T,. By also measuring the characteristic time at T= T,, the viscosity 
qo at T= T,  may be obtained. We observe that qe could not show the critical behaviour 
proposed by Gouda et al. [18] because such critical behaviour would require that the 
characteristic time diverges or that cxp exhibits critical behaviour. Since the induced tilt 
angle does not show a divergence experimentally at T= T,, then according to equation 
(14), cxp does not diverge and therefore qe will not exhibit a critical behaviour near the 
S2-S; transition. 

The relaxation time treI calculated from equation (19) with v=e=2.718 as a 
function of temperature and field is shown in figure 7, respectively. The temperature 
dependence of treI is such that it decreases with temperature and saturates far from c. It 
is enhanced near T,  much more than the characteristic response time shown in figure 
5 (A). In this sense we say that the relaxation exhibits more critical slowing down than 
does the response. The value of zrel should drop to zero at T= T, although to diverges as 
T+ T,. The field dependence of treI is strong near the transition (figure 7 (B)) and it has 
no field dependence far from the transition, as expected from equation (19). Comparing 
figure 7 (B) to 5 (B), the field dependence of zreI is similar to that of the response time and 
the two characteristic times have approximately the same values. This suggests that the 
response to a monopolar square voltage pulse may look almost symmetric only far 
from the transition or where the linear approximation holds. 

5. The electro-optic response 
5.1. General considerations 

Linearly polarized light propagating along 2 through the structure of figure 1, in 
general, will be decomposed inside the medium into two independent eigenwaves, the 
ordinary and extraordinary, with the refractive indices no = J E ~  and n, = JE,, ,  
respectively. Here E~ and E~~ are the optical dielectric constants perpendicular and 
parallel, respectively, to the director. To produce maximum contrast ratio, an 
electroclinic device may be operated as follows: In the off state, the cell is rotated 
around the propagation direction such that only one of the two eigenwaves is excited 
and therefore the light leaves the cell without a change in its polarization state. When 
placed between crossed polarizers the device has zero transmission. With the 
application of an electric field, the two eigenmodes are excited. This causes the state of 
polarization of the emerging light to change in a way which depends on the cell 
thickness of the cell, producing a non-zero output. 
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Soft mode ferroelectric effects 507 

The emerging light from the cell is, in general, elliptically polarized. The angle 
between the principal axis of the ellipse CI and the direction of incident polarization is 
given by 

CI = R -+ arctan [tan (2R) cos 61. (23) 
Here 6 = k,dAn is the phase lag between the two eigenwaves where ko = 2n/il, is the 

wave vector of light in the external isotropic medium, and 0 is the angle between the 
incident polarization and the optic axis. 

To form a half-wave plate 6 = (2m + l)n with m = 0,1,2,. . . . When this condition is 
satisfied, the output is linearly polarized with its plane of polarization rotated by an 
angle a = 2R. In the case of a surface stabilized ferroelectric liquid crystal, R = 28, and if 
0 z n/8 then CI z 4 2  and ideally 100 per cent transmission is obtained in the ON state. In 
the electroclinic case 0 < n/8 for currently available mixtures, and therefore the ON 
state is less bright. One can enhance the ON state by applying a bipolar voltage such 
that R= 2(8+ + 8-) where 8, and 8- are the induced tilts for the positive and negative 
voltages, respectively. 

To describe the electroclinic electro-optic response, it is sufficient to calculate the 
response to a step potential such that the field changes very quickly from 0 to E,  where 
the RC time constant is very small compared to the optical switching response time. 
However, some electroclinic materials exhibit an optical response time on the order of 
loons, so that the RC time constant becomes important. For all presently available 
mixtures which exhibit such a fast switching, the electroclinic effect is low and the 
induced tilt angle is a fraction of one degree or at most a few degrees. Therefore for these 
high-speed electroclinics, the linear approximation is adequate for most purposes. The 
growth of the applied field may be approximated as an exponential 

E( t )  = E [  1 -exp (- t/RC)], (24) 

where R and C are the electroclinic equivalent resistance and capacitance, respectively. 
The linear approximation solution to the dynamic equation given in equation (1 l), 
without the e3 term, becomes 

e(t)=------- " (z,[1 -exp(-t/z,)]-RC[l -exp(-t/RC)]}, (25) TO-RC 

where 80 and zo are given in equations (12) and (13). The first term grows with time 
constant zo while the second term grows with RC. When RC is comparable to z,, its 
effect becomes important. If z,<<RC then the response is limited by the RC time 
constant. Equation (25) assumes that the capacitance does not change with time due to 
a growth of the polarization, described in equation (2). Since we consider here the case 
of small induced tilt angles, the polarization is very small compared to its value in the S$ 
phase. For induced tilt angles of a few degrees and the standard values of cxp we find 
that the polarization capacitance is smaller than the geometric capacitance by a factor 
of 10 to 15. Therefore the polarization capacitance may be neglected compared to the 
geometric capacitance, and the change of C with time is negligible. However, for certain 
electroclinic mixtures, where the polarization is very high, the change of C with time 
must be considered, and might produce some additional non-linearities in the 
switching behaviour. 

5.2, Rejection and transmission coeficients 
For incident light propagating along f and linearly polarized such that its 

polarization vector E ,  makes an angle 0 with the optic axis direction on the yz plane 
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508 I. Abdulhalim and G. Moddel 

(figure 8),  the complex amplitudes of the ordinary and the extraordinary waves inside 
the structure are given by 

I. E, = - E ,  sin R exp (ik,nox)6, 

E, = E,  cos Q exp (ikonex)& 

Here 6 and 6 are unit vectors in the direction of the ordinary and extraordinary 
axes, respectively. For a more complete description we assume the two substrates have 
different refractive indices, ngl, and ngz and that multiple reflections take place. Since 
the two eigenwaves are orthogonal inside the medium, they cannot interfere and each of 
them is treated as an independent plane wave exhibiting multiple reflections from the 
two boundaries. The summation over all of these reflections (partial waves) yields the 
following expressions for the total transmitted and reflected amplitudes between 
crossed polarizers (see Appendix B) 

The transmittance and reflectance are given by IE,/E,IZ and IE,/E,12, respectively. 
Equations (27)  and (28)  are correct if we neglect the reflections from the substrate-air 
interface, that is the liquid crystal is between two semi-infinite isotropic substrates. To 
include these reflections in the calculation, a good approximation would be to multiply 
each of the above expressions by the corresponding transmission or reflection 
coefficients of each of the corresponding substrate-air interfaces. 

For an electrically-addressed device, the two substrates are usually identical, such 
that ngl = ngz = ng, and equation (27)  becomes 

ngne exp ( -  ik,dn,) 
(n,  + ng)’ - (ne - ng)’ exp (- 2ik,dn,) 

E ,  = 2E,  sin (2Q) 

ngno exp ( - ik,dno) 
(no + ng)’ - (no-  ng)’ exp (- 2ikodn0) 

- 

The expressions given here are valid also for surface stabilized ferroelectic liquid 
crystals and tilted structures if the appropriate expressions for no and n, are used. We 
note a difference between equation (29)  and the equivalent expression 
obtained by Xue et al. [ 2 0 ] .  The denominators of their expression are given by 
(no, , - ng)’ + ( n o , .  + ng)’ exp ( -  2ik,dn0,,). These expressions are correct when one 
neglects the multiple reflections. In that case no = n, zz ng, which is the condition they 
considered in their calculations. Therefore their results should be correct to within 1 per 
cent despite the error in their expression. 
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/ I incident light 

polarizer 
electroclinic LC layer 

polarizer axis 

EO 

Figure 8. Geometry used for calculating the optical response of an electroclinic cell. 

The commonly used simple formula for transmittance between crossed polarizers 
when multiple reflections are neglected is obtained from equation 

T, = sin’ (&k,dAn) sin’ (2fl), 

where An = n, - no is the birefringence. 

reflectance through a polarized beamsplitter may be written as 
For a reflection-mode device, usually ngl zz no zz n,, and using 

R =$sin2 (2R){r& + ~ ~ ~ ~ - 2 r ~ ~ ~ r ~ ~ ~ c o s  (2k,dAn)). 

equation (28) the 

Here rogz and reg2 are the reflection coefficients of the ordinary and extraordinary waves 
from the second substrate, respectively (Appendix B). 

If ng2 > n, then a simpler expression (equation (B 7)) may be obtained which is 
analogous to relation (30). 

5.3. Transmittance calculations 
To calculate the transmitted signal we use equation (27) with the constants: 

ngl = ng2 = 1.5, no= 1-55, n, = 1.67 and k,d = 71/0.12 such that the cell acts as a half-wave 
plate. The transmittance versus the field at different temperatures is shown in figure 9 
for the induced tilt angles of figure 2(A). Although the induced tilt is linear with the 
field for small angles and there is no threshold, the optical signal, which is determined 
by the geometry, grows as sin’ (28). It deviates from linearity and appears to have a 
small threshold near zero field. The transmittance versus temperature at different field 
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Electric Field / V/pm 
Figure 9. Transmittance through an electroclinic cell between crossed polarizers versus the 

field at different temperatures. The incident light is polarized along the optic axis at zero 
field such that the transmitted light is extinguished. 

strengths exhibits similar behaviour to the induced tilt angle (figure 2 (B)) versus 
temperature. The temporal evolution of the transmittance response to a step voltage at 
different fields and temperatures is shown in figure 10, corresponding to the evolution 
of the tilt angle in figure 3. Again, because the optical signal varies as sin2 (269, there 
appears to be a small threshold. That is, the curves in figure 10 have a sigmoidal shape, 
rather than the linear behaviour in the beginning and saturation at the end which the 
induced tilt exhibits. For a surface stabilized ferroelectric liquid crystal cell the time until 
the signal reaches 10 per cent of its maximum (delay time) is larger by a factor of two 
than the rise time (1CL-90 per cent change in the transmittance) [20]. In the next section 
we will show that, in contrast to the surface stabilized ferroelectric liquid crystal case, 
the delay for an electroclinic is shorter than the rise time by a factor of approximately 
seven. In a temporal sense the electroclinic response is more analogue than the binary 
response of a surface stabilized ferroelectric liquid crystal. In addition, the surface 
stabilized ferroelectric liquid crystal exhibits bistability C203. 
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Figure 10. Temporal evolution of the transmittance for the geometry of figure 8 at constant 

field and different temperatures. 

5.4. Optical response time calculations 
Since the only time dependent term in the expression for the transmittance is 

sin' (20), one can derive an expression for the optical delay, rise and response times. The 
response time is the sum of the delay and rise times, which is the time required for the 
transmittance to change between 0 to 90 per cent. The 10 and 90 per cent change in the 
transmittance will be reached when 0=6 , . ,  and 8=6, . ,  where 

I 60.1 =O-5 arcsin [0-316 sin (26,)l 

60.9 =0-5 arcsin C0.948 sin (26,)l. 

Substituting these expressions into equation (9) one obtains the following 
expression for the delay Td, response T ~ ~ ~ ,  and rise T~~~~ times, respectively 
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512 I. Abdulhalim and G. Moddel 

If one uses the exponential growth in either equation (11) or (15) then equations 
(33H35) become 

where re stands for zo and z, in equations (13) and (16), respectively. Since 8, < 20°, then 
6,. and may be approximated as: B0. z 0.3 166, and 60,9 % 0.9488,, yielding 

(39) I ~d % 0.37970, 

z,,, NN 2.9562,, 

zrise E 2.5772,. 

Similar expressions could be found for the fall times using equations (1 8) and (1 9) 
when the fall is relaxation type, or equations (29) and (21) for the bipolar switching case. 

In figures 11 and 12 we show the optical delay and rise times calculated from 
relations (33H35). The general behaviour as a function of field and temperature is 
similar to that of the characteristic time shown in figure 5. The optical characteristic 
times of equation (39) agree with the relationship of their values from figures 11 and 12 
to the characteristic times (figure 5 )  in the linear regime. The critical slowing down is 
observed in the delay time versus temperature but not in the rise and response times. 
The optical rise (figure 11 (B)) time exhibits the maximum mentioned in 92 (figure 6). 
Again, the maximum appears more pronounced for late stages of switching since it is 
higher in the rise time than in the response time. Figures 9-12 show that in general, 
optical response measurements can provide important information on the switching 
mechanism for the electroclinic effect. The figures may also be used for device 
applications in helping to determine optimal operation conditions. 

6. Conclusions 
We have investigated theoretically the switching behaviour and electro-optic 

response of the electroclinic effect in chiral smectic A liquid crystals. An exact analytic 
solution was found for the dynamic equation of the 0 motion up to the O4 term in the 
Landau expansion of the free energy. The inclusion of this term is important in 
explaining certain properties near the transition, even for small angles, and it becomes 
essential for the case of induced tilt angles larger than a few degrees. Among the 
properties which the non-linear term adds are the following: (1) the characteristic time 
and the induced tilt have a finite value at T= T, and do not diverge; ( 2 )  the characteristic 
time has a strong field dependence near the transition; (3) the characteristic time 
exhibits a critical slowing down only in the early stages of the switching, while in later 
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Figure 1 1 .  (A) The delay time of the optical response versus temperature for different field 

strengths. (B) Similar to (A) for the rise time of the optical response. 
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Figure 12. (A) The delay time for the optical response versus the applied electric field at different 
temperatures. (B) Same as (A) for the rise time of the optical signal. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Soft mode ferroelectric effects 515 

stages it exhibits a maximum as a function of temperature close to the transition 
temperature and decreases below that towards a finite value at T= T,; (4) the latter 
maximum shifts to higher temperatures and becomes less pronounced as the field 
increases; (5 )  the induced tilt asymptotes to for high fields at temperatures close to 
the transition; (6) the slope d6/dE is enhanced near the transition but has a finite value 
at T,; (7) the relaxation behaviour after the field was switched off depends on the 
previously applied field solely due to the non-linear term; and (8) as a result of (7) the 
electroclinic response to a monopolar square pulse voltage is not symmetric, however it 
might appear that way for cases where the linear approximation is valid. We suggest 
that the coupling constant exp between the tilt and the field, as well as its field 
dependence, may be determined from measurements of the finite values of the induced 
tilt and characteristic time near T,. These values will also determine directly the 
viscosity. We note that the viscosity cannot show a critical behaviour near the 
transition, contrary to a recent suggestion [ 181. Experimental confirmation of the new 
results presented here will improve our understanding of the electroclinic effect and the 
S2-S: transition. 

The electro-optic response of an electroclinic cell has been considered in detail. This 
response is a powerful technique for exploiting the switching behaviour of the 
electroclinic effect from both fundamental and practical viewpoints as a fast analog 
electro-optic device. A detailed experimental investigation of S i  liquid crystals and the 
development of similar theory for tilted and non-uniform structures will follow. 

We are grateful to Professor N. Clark, A. Gabor, P. Barbier, and R. Rice for their 
comments on the manuscript. This work was performed under the National Science 
Foundation Engineering Research Center Grant No. CDR-862236. 

Appendix A 
Derivation of the analytic solutions in $ 3  

The three roots of the cubic equation (6) for a>O are given by 

el =u+ +u- ,  
6, = -+[el + iJ3( u + - u -)I, 
o3 = 6;. 

Since U are always real the only real solution is 8, = 6,, as given in equation (7). By 
factoring out (6- 6,) we find 

c X p ~  - ae - bt13 = (e - e,)(ez + oe, + 0: - 3u + u -) (A 2) 
and the integration of the dynamic equation (4) is straightforward. To distinguish 
between the different cases of step field (equation (9)), relaxation (equation (19)) and 
bipolar pulse field (equation (20)), different initial conditions must be taken. For the 
general description we let the field switch from 0 at t=O to El very quickly and then 
switch very quickly to the level E ,  at the time t , .  The solution during the interval 
O < t < t , ,  is given by 
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516 I. Abdulhalim and G. Moddel 

The solution for t > t ,  is obtained by taking the initial condition 8 = 8,, at  t = t ,  and 
8= 8,, as t 4  co and is given by 

Equation (9) is obtained from equation (A 3) by noting that 8, = 0,, and E = El. 
Equation (18) is obtained by direct integration of the dynamic equation (4) with E=O 
and the initial condition 8 = 8, at t = 0 where t is measured from the moment the field 
is switched off. Equation (20) is obtained from equation (A4) by substituting 
0,,=8,+, E + = E 1 ,  8s2=tls-,  E - = E ,  and t l = t + .  The case o f r<< l  is achieved by a 
Taylor series expansion of U ,  in equation (8) up to the first order, yielding 

which directly gives equation (14). The case of r>> 1 is treated by writing U * in the form 

Again a Taylor series expansion to the first order yields 

which directly results in the linear approximation of equation (12). 

the form 
In order to derive the exponential growth in equation (15) we write equation (9) in 

where h(8) = 2 In (8, - 8) - g(8). 
We assume that h(8) does not change significantly over the range from 0 = 0 to 0 = 8, 

and therefore we may replace it with its value at 8=0 and directly obtain relation (15). 
This approximation is therefore justified when 0, is small, as was shown in figure 4. 
Therefore equation (15) may replace equation (1 1) because it covers the same range of 
induced tilt angles, and also gives the correct expressions for the steady-state induced 
tilt and the characteristic time. 

To see how one obtains z , ~ q ,  in the limit [>>1 (small 0J, we use the result in 
equation (A 7) and write 

U*=*&).  

Substituting these in equation (16) directly shows that z,wz,,. For the limit c<< 1 we 
substitute U * from equation (A 3) into equation (16) yielding the E-’I3 behaviour oft, 
in equation (17). 
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Appendix B 
Derivation of the transmittance and reflectance coefficients 

The summation over all of the partial waves resulting from the reflections from the 
liquid crystal substrate interfaces is a simple geometric series. Performing these 
summations for both the ordinary and extraordinary waves yields the following 
expressions for the amplitudes of the two waves at the boundary x = d +  

and similarly for the amplitudes at  x = O -  

Here 6 and ii designate the directions of the ordinary and the extraordinary axes, 
respectively. The coefficients tglo, tog,, t g l e ,  teg2, rglo,  rag,, rg le ,  reg2 are the Fresnel 
transmission and reflection coefficients of the o and e waves from the two boundaries 
and are given by 

The total field amplitudes at the two boundaries are 

Eld+ =Eod+ + Eed+, 

Eta- =Eoo- +Eeo-.  

If the analyser is crossed with respect to the polarizer, then its axis is represented by 
the unit vector 

A = sin 06 + cos a6 (B 5) 
and the transmitted and reflected amplitudes are given by 

El = Etd + * A, 
E,= E,,- * A. 

Equation ( B  3) is substituted into equations ( B  1) and ( B  2). The result is substituted 
in equation ( B  4) which, when combined with equation ( B  5) in equation ( B  6), directly 
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yields equations (27) and (28). In this formulation one finds expressions for E, and E ,  
with any orientation of the analyser by including the appropriate expression for A. 

To obtain equation (31), we take n g l z n n , z n n ,  for a reflection-mode device in 
relation (28). If ng2 > n, then we can approximate resz z rogz z r2 with the result that 

R = R ,  sin2 (k,dAn) sin2 2R, (B 7) 

for R 2  = Ir212 taken as the average between Ir0,J2 and lreg2I2. Equation (B 7)is analogous 
to equation (30) used for transmission-mode device. Note that the phase in equation 
(B 7) is double that in equation (30) because the beam travels back and forth through 
the liquid crystal. 
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